
DDQT

Arun Manohar

Sep 19, 2021





CONTENTS

1 Readme 3

2 Getting Started 5
2.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Running the program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Configuring Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 How to cite 11

4 Code Reference 13
4.1 DefectDetection module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 point_in_convex_polygon module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 License 19

6 Acknowledgements 21

7 Contact 23

Python Module Index 25

Index 27

i



ii



DDQT

The domain of Nondestructive Testing (NDT) and Structural Health Monitoring (SHM) comprise of techniques that are
used to evaluate the state of health of a structure without causing any damage to the structure being inspected. Typical
examples of structures being inspected include aircraft components, bridges, nuclear reactors, etc. Defect Detection
and Quantification Toolbox (DDQT) aims to provide a framework to automate the routine tasks for researchers in the
field of NDT and SHM.

In the fields of NDT and SHM, experiments are performed using a variety of modalities like Ultrasound, Infrared Ther-
mography, X-Rays, etc. Matlab is often used to perform experiments. Typically, the resulting data is very often a 3D
dataset comprising of time axis and 2D spatial axis. Once the data is obtained, a variety of visualization checks are
performed. Following this, features are created at each and every spatial location in the time series. Some examples of
the types of features are based on time series, gradients, spatial filters, etc. At this stage, to avoid the curse of dimen-
sionality, a feature reduction step is performed using PCA in case of unsupervised defect detection. Once the subset
of meaningful features is identified, the defect regions are detected using a statistical distance metric like Mahalanobis
distance. In DDQT, we also propose a realatively newer method to identify defects using Isolation Forests. Follow-
ing this, the performance of the feature space and detection algorithms is quantified using Receiver Operating Curves
(ROC) curves compared to the raw data. The performance is quantified using commonly used classification metrics
such as True Positive Rate (TPR), False Positive Rate (FPR) and Area Under Curve (AUC). A visual representation of
these metrics is presented using charts to aid the user.

While there are clearly defined steps that researchers in field of NDT and SHM often pursue, to the best of our knowledge
there are no offerings that provide a framework so researchers can mainly focus on the feature space and tweaking the
defect detection algorithms. With very minimal edits to the driver program, researchers can visualize the results with
ease and focus on the underlying physics to improve the performance of defect detection instead of spending much time
and effort on setting up the pipeline process.

In Summary, `DDQT` can be used for;
• Reading in Matlab data

• Visualizing data

• Creating features in the time and spatial domain

• Feature reduction using PCA

• Identifying defects using Mahalanobis distance and Isolation Forest

• Quantifying results using ROC curves

• Visualizing outcomes

There are numerous avenues to enhance this toolbox. I welcome any contributions to this program. Some possible
areas that could use improvements are;

• Improvements in feature space

• Improvements to defect detection algorithms

• Coding enhancements

• Documentation enhancements

• Currently, only certain time stamps are used in calculating computationally intensive features. There is scope to
write more computationally efficient code to handle more time stamps (if not everything. . . )

• Possibility of including circular defects - currently, defects are defined using polygon vertices

If you would like to collaborate with me in improving this toolbox or if you would like to provide sample data, please
reach out to me at

>>>my_first_name = 'arun'
>>>print(str(my_first_name) + 'mano121@outlook.com')

CONTENTS 1



DDQT

Feel free to fork and add any enhancements, and let me know if a pull request is needed to merge the changes.

If you use this work in your research, please cite using;

@software{ArunManohar_20210322,
author = {Arun Manohar},
title = {{Defect Detection and Quantification Toolbox (DDQT)}},
month = mar,
year = 2021,
publisher = {Zenodo},
version = {v0.1.0},
doi = {10.5281/zenodo.4627984},
url = {https://doi.org/10.5281/zenodo.4627984}

}

Thank you!

2 CONTENTS



CHAPTER

ONE

README

Defect Detection and Quantification Toolbox (DDQT)
Arun Manohar (2021)

`DDQT` can be used for;
• Reading in Matlab data

• Visualizing data

• Creating features in the time and spatial domain

• Feature reduction using PCA

• Identifying defects using Mahalanobis distance and Isolation Forest

• Quantifying results using ROC curves

• Visualizing outcomes

There are numerous avenues to enhance this toolbox. I welcome any contributions to this program. Some possible
areas that could use improvements are;

• Improvements in feature space

• Improvements to defect detection algorithms

• Coding enhancements

• Documentation enhancements

• Currently, only certain time stamps are used in calculating computationally intensive features. There is scope to
write more computationally efficient code to handle more time stamps (if not everything. . . )

• Possibility of including circular defects - currently, defects are defined using polygon vertices

If you would like to collaborate with me in improving this toolbox or if you would like to provide sample data, please
reach out to me at

>>>my_first_name = 'arun'
>>>print(str(my_first_name) + 'mano121@outlook.com')

Feel free to fork and add any enhancements, and let me know if a pull request is needed to merge the changes.

If you use this work in your research, please cite using;

@software{ArunManohar_20210322,
author = {Arun Manohar},
title = {{Defect Detection and Quantification Toolbox (DDQT)}},
month = mar,

(continues on next page)

3



DDQT

(continued from previous page)

year = 2021,
publisher = {Zenodo},
version = {v0.1.0},
doi = {10.5281/zenodo.4627984},
url = {https://doi.org/10.5281/zenodo.4627984}

}

Thank you!

4 Chapter 1. Readme



CHAPTER

TWO

GETTING STARTED

2.1 Dependencies

In order to run the program, you need Python3 and the following dependencies.

• SciPy

• Matplotlib

• NumPy

• PyWavelets

• sklearn

2.2 Installing

Either use git-clone using the following command;

git clone https://github.com/arunmano121/DDQT.git MyDDQT

or manually download the two python files into your desired working directory. In the example MyDDQT is an example.
You can use any name of your choice.

2.3 Running the program

cd into your working directory and run the program.

cd MyDDQT
./DefectDetection.py

5

www.python.org
https://www.scipy.org/
https://matplotlib.org
https://numpy.org
https://github.com/PyWavelets/pywt
https://sklearn.org


DDQT

2.4 Configuring Parameters

The program is designed so that all parameter settings need to be only edited within the main() module.

The following block is used to load Matlab data, this assume a dataset named sample.mat containing a table name
rawData1. The output data is stored as ndarray and is named mat. This will be used for further processing.

print('Reading in raw matlab data using scipy IO modules...')
# Example - this assumes a matlab dataset named defect.mat and the
# table named rawData inside the dataset
dataset = 'sample.mat'
tablename = 'rawData1'
mat = read_matlab_data(dataset=dataset, table=tablename)

The data is assumed in the format containing time (axis=0) followed by spatial axis 1 (axis=1) and spatial axis 2
(axis=2) respectively. If the Matlab dataset contains data in a different axis order, re-arrange using numpy.moveaxis
before proceeding to subsequent steps.

Data is described by the following block.

[t_max, s1_max, s2_max] = mat.shape
print('Shape of the data matrix')
print('t_max: %d s1_max: %d s2_max: %d' % (t_max, s1_max, s2_max))

The range of the three different axis is set.

# scanning parameters
# in this sample code, time axes ranges from t_lb to t_ub over t_max
t_lb = 0*1e-1
t_ub = t_max*1e-1
t = np.linspace(t_lb, t_ub, t_max)

# s1 axis range from s1_lb to s1_ub divided over s1_max steps
s1_lb = 0
s1_ub = 200
s1 = np.linspace(s1_lb, s1_ub, s1_max)

# s2 axis range from s2_lb to s2_ub divided over s2_max steps
s2_lb = 0
s2_ub = 250
s2 = np.linspace(s2_lb, s2_ub, s2_max)

Units along the three different axis is held in a dictionary named units. In this example, the time axis is defined in micro
seconds, while the two spatial axis are in mm. Set the appropriate units based on the experiment.

# dictionary object to hold the units along the different axis
units = {'t_units': '$\\mu$S', 's1_units': 'mm', 's2_units': 'mm'}

For ease of plotting, the s1 and s2 axis are converted to 2D meshgrid.

# meshgrid conversion in 2D
s1_2d, s2_2d = np.meshgrid(s1, s2, indexing='ij')

Raw data is visualized at four random spatial points by charting the time series.

6 Chapter 2. Getting Started

https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html


DDQT

# raw data visualization
print('Pick 4 random spatial coordinates and chart the time-series...')
visualize_time_series(mat, t, s1, s2, units)

The spatial data is visualized at different time stamps as needed. In the example below, the spatial data is visualized
between time indices of 450 (t_min_idx) to 500 (t_max_idx) in steps of 25 (del_t_idx).

print('Visualize spatial slices of data at certain time stamps...')
t_min_idx = 450
t_max_idx = 500
del_t_idx = 25
visualize_spatial_data(mat, t, s1_2d, s2_2d,

t_min_idx, t_max_idx, del_t_idx, units)

The raw time series is very noisy and often a low-pass filter is desired. In this example, the time series is filtered using
a simple mean filter. The filter avergages using the size parameter. The bigger the number, the more aggressive the
filtering is.

# time series filtering of data
print('performing mean filtering at each spatial location...')
mat = mean_filter(mat, t, s1, s2, units, size=20, plot_sample=True)

The defects are defined using the list structure. As many defects can be setup. The defects can be defined using as
many vertices as needed. Each defect is a list of tuples. The defect names or labels are a list containing strings.

# define defects
print('Defining coordinates of defects...')
# define as many defects as needed
# each defect should contain the coordinates of the vertices
# the structure is list of tuples
def1 = [(20, 20), (50, 10), (30, 40), (20, 30)]
def2 = [(120, 120), (180, 120), (150, 180)]
def3 = [(60, 60), (80, 60), (80, 80), (60, 80)]

# list contains all the defects
defs_coord = [def1, def2, def3]
def_names = ['D1', 'D2', 'D3'] # names of defects
defs = define_defects(s1, s2, defs_coord, def_names)

Calculation of features at every time index is computationally intensive. A sample of time stamps in defined. t_stamps
defines the indices at which features are calculated, and where performance is finally measured.

# sample time indices where computationally intentionally features
# will be calculated.
t_stamps = range(500, 800, 100)

Feature engineering is very important and is based on problem at hand and creativity of the researcher. Feel free to
define additional features as necessary. In the sample, the following family of features are calculated.

Identity features.

# identity features
features_id = {}
features_id['id'] = mat

2.4. Configuring Parameters 7



DDQT

Gradient based features.

# compute gradient features
print('Calculating spatial and temporal gradients...')
features_grad = {}
features_grad = compute_features_grad(mat)

Spatial domain features are calculated at desired time indices defined above.

# compute spatial domain features
print('Calculating spatial features at every location and time...')
features_sd = {}
features_sd = compute_features_sd(mat, t_stamps)

Time domain features are calculated at desired time indices defined above.

# compute time domain features
print('Calculating temporal features at every spatial location...')
features_td = {}
features_td = compute_features_td(mat, t_stamps)

Wavelet decomposition features are calculated at desired time indices defined above.

# compute wavelet decomposition features
print('Calculating wavelet transformed features at every location...')
features_wav = {}
features_wav = compute_features_wav(mat, t_stamps)

Once features are calculated, it is often desired to visualize the feature. The visualize_features accomplishes this as
shown below. In the examples, s1_grad and s2_grad features belonging to features_grad are visualized.

# visualize feature
print('Visualizing computed features...')
t_idx = 650
visualize_features(mat, features_grad, s1_2d, s2_2d, 's1_grad',

t_idx, t, units)
visualize_features(mat, features_grad, s1_2d, s2_2d, 's2_grad',

t_idx, t, units)

The input features across all families are now combined into a single feature family for further processing. com-
bine_features function combines the family of features as defined in the list named feature_list.

# combine features
print('Combining all features from different methods into a dict...')
feature_list = [features_id, features_grad, features_sd,

features_td, features_wav]
features = {}
features = combine_features(feature_list)
print('Total number of features is %d' % (len(features)))

The features are scaled using the minimum and maximum values, so that the resulting features lie between 0-1. Scaling
features has proven to be useful in Machine Learning.

8 Chapter 2. Getting Started



DDQT

# normalize features
print('Normalize features...')
features = normalize_features(features, t_stamps)

Outlier analysis is perfomed using two methods - Mahalanobis distance and Isolation Forest. If PCA is desired to
reduce input dimensionality, set pca_var to the Desired Variance level. For example, if pca_var is set to 0.9, then it
is implied that 90% variance is desired. Accordingly, PCA will choose the number of dimensions that are needed to
achieve this. The result of Mahalanobis distance is output to the ndarray named mah.

# Outlier analysis using Mahalanobis distance
# if PCA is required to trim features, set pca_var to the desired
# explained varaince level - in this example, 90% variance is desired
print('Mahalanobis distance to identify outliers...')
mah = {}
mah = outlier_mah(features, t_stamps, pca_var=0.9)

Another popular method to detect outliers uses Isolation Forest method. The result is output to the ndarray named iso.

# fit Isolation Forest model
# if PCA is required to trim features, set pca_var to the desired
# explained variance level - in this example, 90% variance is desired
print('Fit Isolation Forest model...')
iso = {}
iso = fit_isolationforest_model(features, t_stamps, pca_var=0.9)

In order to better visualize the results contained in mah and iso, the frames are scaled between 0-1 using the minimum
and maximum values of the arrays.

# scale frames between 0-1
print('Scaling frames between 0-1 for better interpretability...')
mat = scale_frames(mat, t_stamps)
mah = scale_frames(mah, t_stamps)
iso = scale_frames(iso, t_stamps)

defect_detection_metrics will compute the performance of the algorithms using True Positive Rate (TPR), False Positive
Rate (FPR) and Area Under Curve (AUC) metrics. The function will also output the TPR at FPR rates of 2%, 5% and
10%. If plot parameter is set to True, the Reciever Operating Characteristic (ROC) curves are plotted to show the
improvement obtained over the raw data.

# Defect detection metrics
print('Quantification of defect detection and plotting the results...')
defect_detection_metrics(mat, mah, iso, s1_2d, s2_2d,

defs, t_stamps, t, units, plot=True)

2.4. Configuring Parameters 9



DDQT

10 Chapter 2. Getting Started



CHAPTER

THREE

HOW TO CITE

if you use this work in your research, please cite using;

@software{ArunManohar_20210322,
author = {Arun Manohar},
title = {{Defect Detection and Quantification Toolbox (DDQT)}},
month = mar,
year = 2021,
publisher = {Zenodo},
version = {v0.1.0},
doi = {10.5281/zenodo.4627984},
url = {https://doi.org/10.5281/zenodo.4627984}

}

Thank you!

11



DDQT

12 Chapter 3. How to cite



CHAPTER

FOUR

CODE REFERENCE

4.1 DefectDetection module

DefectDetection.annotate_plots(ax, defs)
Annotate charts with locations of defects

Parameters
ax: axis object plot axis

defs: dict defect parameters

Returns
None

DefectDetection.combine_features(feature_list)
Combine all features from different methods into one single dict

Parameters
feature_list: list list containing all entries of input features that need to be concatenated

Returns
features: dict feature dictionary containing all the input features

DefectDetection.compute_features_grad(mat)
Calculates spatial and temporal gradients

Parameters
mat: ndarray raw data

Returns
features_grad: dict dictionary containing spatial and temporal gradient features

DefectDetection.compute_features_sd(mat, t_stamps)
Calculates spatial features at every location and time stamp

Parameters
mat: ndarray raw data

t_stamps: list time stamps at which time domain features are calculated

Returns
features_sd: dict dictionary containing spatial domain features

13



DDQT

DefectDetection.compute_features_td(mat, t_stamps)
Calculating temporal features at every spatial location

Parameters
mat: ndarray raw data

t_stamps: list time stamps at which time domain features are calculated

Returns
features_td: dict dictionary containing time domain features

DefectDetection.compute_features_wav(mat, t_stamps)
Calculates wavelet transformed features at every location

Parameters
mat: ndarray raw data

t_stamps: list time stamps at which wavelet features are calculated

Returns
features_wav: dict dictionary containing wavelet features

DefectDetection.defect_detection_metrics(mat, mah, iso, s1_2d, s2_2d, defs, t_stamps, t, units, plot=True)
Quantification of defect detection, and plotting the results

True-Positive Rate (TPR), False-Positive Rate (FPR), Receiver Operating Curves (ROC) are calculated for the
raw data, Mahalanobis distance and result of Isolation Forest method. In addition, Area Under Curve (AUC) is
also calculated to quantify the performance. Often, performance in terms of higher TPR is desired at lower FPR.
To aid this, TPR values are calculated at 2%, 5% and 10% FPR. Further, the results are presented graphically if
needed.

Parameters
mat: ndarray raw data - 3D float array

mah: ndarray result of performing Mahalanobis distance - 3D float array

iso: ndarray result of performing Isolation Forest algorithm - 3D float array

s1_2d: ndarray 2D meshgrid representation of s1 axis

s2_2d: ndarray 2D meshgrid representation of s2 axis

defs: dict defect parameters

t_stamps: list time stamps at which features were calculated and where results are desired

t: list time coordinates

units: dict units of the different dimensions

plot: Bool Boolean to indicate if plots are needed to visualize

Returns
None

DefectDetection.define_defects(s1, s2, defs_coord, def_names)
Define coordinates of defects

Parameters
s1: list spatial axis 1

s2: list spatial axis 2

14 Chapter 4. Code Reference



DDQT

defs_coord: list list containing all defects - each defect contains a list of tuples containing the
vertices of defect

def_names: dict dictionary containing the names of defects

Returns
defs: dict dictionary containing all the necessary parameters of all the defined defects

DefectDetection.fit_isolationforest_model(features, t_stamps, pca_var)
Fit Isolation Forest model

Parameters
features: dict dictionary containing all input features

t_stamps: list time stamps at which features were calculated and where results are desired

pca_var: float contains the desired explained variance parameter, if less than 1.0, PCA will be
performed

Returns
iso: ndarray result of Isolation Forest model over the data

DefectDetection.main()
All the subroutines will be called from here

DefectDetection.mean_filter(mat, t, s1, s2, units, size, plot_sample)
Performs mean filtering at each location

Parameters
mat: ndarray raw data

t: list time axis

s1: list spatial axis 1

s2: list spatial axis 2

units: dict units of the different dimensions

size: int number of elements to use in the mean filter. The higher, the more aggresive the filtering

plot_sample: Bool Boolean to indicate if time series plots are needed to compare raw and fil-
tered data

Returns
filt_mat: ndarray mean filtered raw data based on kernel size

DefectDetection.normalize_features(features, t_stamps)
Normalize features

Parameters
features: dict dictionary containing all input features

t_stamps: list time stamps at which features were calculated and where results are desired

Returns
features: dict dictionary containing all normalized features

DefectDetection.outlier_mah(features, t_stamps, pca_var)
Mahalanobis distance to identify outliers

Parameters

4.1. DefectDetection module 15



DDQT

features: dict dictionary containing all input features

t_stamps: list time stamps at which features were calculated and where results are desired

pca_var: float contains the desired explained variance parameter, if less than 1.0, PCA will be
performed

Returns
mah: ndarray contains the result of computing Mahalanobis distance over the data

DefectDetection.read_matlab_data(dataset, table)
Reads in raw matlab data using scipy IO modules

Parameters
dataset: ndarray name of the Matlab dataset

table: str name of table within Matlab

Returns
mat: ndarray matlab data that has been converted to numpy array

DefectDetection.scale_frames(arr, t_stamps)
Scale frames between 0-1 for better interpretability

Parameters
arr: ndarray input array that needs to be scaled

t_stamps: list time stamps at which features were calculated and where results are desired

Returns
outarr: ndarray scaled array where the elements lie between 0-1

DefectDetection.visualize_features(mat, features, s1_2d, s2_2d, feature, t_idx, t, units)
Visualize computed features

Parameters
mat: ndarray raw data

features: dict dictionary containing input features

s1_2d: ndarray 2D meshgrid representation of s1 axis

s2_2d: ndarray 2D meshgrid representation of s2 axis

feature: str desired feature that needs to be visualized

t_idx: int time index at which visualization is needed

units: dict units of the different dimensions

Returns
None

DefectDetection.visualize_spatial_data(mat, t, s1_2d, s2_2d, t_min_idx, t_max_idx, del_t_idx, units)
Visualize spatial slices of data at certain time stamps

Parameters
mat: ndarray raw data

t: list time axis

s1_2d: ndarray 2D meshgrid representation of s1 axis

16 Chapter 4. Code Reference



DDQT

s2_2d: ndarray 2D meshgrid representation of s2 axis

t_min_idx: int lower bound time index for visualization

t_max_idx: int upper bound time index for visualization

del_t_idx: int time index steps for visualization

units: dict units of the different dimensions

Returns
None

DefectDetection.visualize_time_series(mat, t, s1, s2, units)
Pick 4 random spatial coordinates and chart the time-series

Parameters
mat: ndarray raw data

t: list time axis

s1: list spatial axis 1

s2: list spatial axis 2

units: dict units of the different dimensions

Returns
None

4.2 point_in_convex_polygon module

Helper module to determine if a point lies within a polygon

Script is based on Ref1 and Ref2.

class point_in_convex_polygon.Point(s1, s2)
Bases: object

Point class to define a point

point_in_convex_polygon.is_within_polygon(polygon, point)
Determine if a point lies within the polygon

Parameters
polygon: list of points polygon definition using a set of points

point: class:’Point’ a single point

Returns
True/False: Bool Depending on if point lies within polygon

4.2. point_in_convex_polygon module 17

https://stackoverflow.com/questions/2752725/finding-whether-a-point-lies-inside-a-rectangle-or-not
https://algorithmtutor.com/Computational-Geometry/Check-if-a-point-is-inside-a-polygon/


DDQT

18 Chapter 4. Code Reference



CHAPTER

FIVE

LICENSE

BSD 3-Clause License

Copyright (c) 2021, Arun Manohar All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

19



DDQT

20 Chapter 5. License



CHAPTER

SIX

ACKNOWLEDGEMENTS

Thanks to Prof. Michael Todd, Dr. See Yenn Chong and Mr. Zihan Wu at University of California, San Diego, for
valuable discussions and inputs.

21



DDQT

22 Chapter 6. Acknowledgements



CHAPTER

SEVEN

CONTACT

Arun Manohar

>>>my_first_name = 'arun'
>>>print(str(my_first_name) + 'mano121@outlook.com')

23



DDQT

24 Chapter 7. Contact



PYTHON MODULE INDEX

d
DefectDetection, 13

p
point_in_convex_polygon, 17

25



DDQT

26 Python Module Index



INDEX

A
annotate_plots() (in module DefectDetection), 13

C
combine_features() (in module DefectDetection), 13
compute_features_grad() (in module DefectDetec-

tion), 13
compute_features_sd() (in module DefectDetection),

13
compute_features_td() (in module DefectDetection),

13
compute_features_wav() (in module DefectDetec-

tion), 14

D
defect_detection_metrics() (in module DefectDe-

tection), 14
DefectDetection

module, 13
define_defects() (in module DefectDetection), 14

F
fit_isolationforest_model() (in module DefectDe-

tection), 15

I
is_within_polygon() (in module

point_in_convex_polygon), 17

M
main() (in module DefectDetection), 15
mean_filter() (in module DefectDetection), 15
module

DefectDetection, 13
point_in_convex_polygon, 17

N
normalize_features() (in module DefectDetection),

15

O
outlier_mah() (in module DefectDetection), 15

P
Point (class in point_in_convex_polygon), 17
point_in_convex_polygon

module, 17

R
read_matlab_data() (in module DefectDetection), 16

S
scale_frames() (in module DefectDetection), 16

V
visualize_features() (in module DefectDetection),

16
visualize_spatial_data() (in module DefectDetec-

tion), 16
visualize_time_series() (in module DefectDetec-

tion), 17

27


	Readme
	Getting Started
	Dependencies
	Installing
	Running the program
	Configuring Parameters

	How to cite
	Code Reference
	DefectDetection module
	point_in_convex_polygon module

	License
	Acknowledgements
	Contact
	Python Module Index
	Index

