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Readme

Defect Detection and Quantification Toolbox (DDQT)

Arun Manohar (2021)

The main goals of this Python toolbox are:


	Reading in Matlab data


	Visualizing data


	Creating features in the time and spatial domain


	Feature reduction using PCA


	Identifying defects using Mahalanobis distance and Outlier Forest


	Quantifying results using ROC curves


	Visualizing outcomes




There are numerous avenues to enhance this toolbox. I welcome any
contributions to this program. Some possible areas that could use
improvements are:


	Improvements in feature space


	Improvements to defect detection algorithms


	Coding enhancements


	Documentation enhancements


	Currently, only certain time stamps are used in calculating computationally
intensive features. There is scope to write more computationally efficient
code to handle more time stamps (if not everything…)


	Possibility of including circular defects - currently, defects are defined
using polygon vertices.




If you would like to collaborate with me in improving this toolbox or if you
would like to provide sample data, please reach out to me at

>>>my_first_name = 'arun'
>>>print(str(my_first_name) + 'mano121@outlook.com')





Feel free to fork and add any enhancements, and let me know if a pull request
is needed to merge the changes.

If you use this work in your research, please cite using;

@software{ArunManohar_20210322,
  author       = {Arun Manohar},
  title        = {{Defect Detection and Quantification Toolbox (DDQT)}},
  month        = mar,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.00},
  doi          = {},
  url          = {}
}





Thank you!





            

          

      

      

    

  

    
      
          
            
  
Getting Started


Dependencies

In order to run the program, you need Python3 and the
following dependencies.


	SciPy [https://www.scipy.org/#]


	Matplotlib [https://matplotlib.org]


	NumPy [https://numpy.org]


	PyWavelets [https://github.com/PyWavelets/pywt]


	sklearn [https://sklearn.org]







Installing

Either use git-clone using the following command;

git clone https://github.com/arunmano121/DDQT.git MyDDQT





or manually download the two python files into your desired working
directory. In the example MyDDQT is an example. You can use any name of
your choice.




Running the program

cd into your working directory and run the program.

cd MyDDQT
./DefectDetection.py








Configuring Parameters

The program is designed so that all parameter settings need to be only edited
within the main() module.

The following block is used to load Matlab data, this assume a dataset named
sample.mat containing a table name rawData1. The output data is stored
as ndarray and is named mat. This will be used for further processing.

print('Reading in raw matlab data using scipy IO modules...')
# Example - this assumes a matlab dataset named defect.mat and the
# table named rawData inside the dataset
dataset = 'sample.mat'
tablename = 'rawData1'
mat = read_matlab_data(dataset=dataset, table=tablename)





The data is assumed in the format containing time (axis=0) followed
by spatial axis 1 (axis=1) and spatial axis 2 (axis=2) respectively.
If the Matlab dataset contains data in a different axis order, re-arrange
using
numpy.moveaxis [https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html] before proceeding to subsequent steps.

Data is described by the following block.

[t_max, s1_max, s2_max] = mat.shape
print('Shape of the data matrix')
print('t_max: %d  s1_max: %d s2_max: %d' % (t_max, s1_max, s2_max))





The range of the three different axis is set.

# scanning parameters
# in this sample code, time axes ranges from t_lb to t_ub over t_max
t_lb = 0*1e-1
t_ub = t_max*1e-1
t = np.linspace(t_lb, t_ub, t_max)

# s1 axis range from s1_lb to s1_ub divided over s1_max steps
s1_lb = 0
s1_ub = 200
s1 = np.linspace(s1_lb, s1_ub, s1_max)

# s2 axis range from s2_lb to s2_ub divided over s2_max steps
s2_lb = 0
s2_ub = 250
s2 = np.linspace(s2_lb, s2_ub, s2_max)





Units along the three different axis is held in a dictionary named units.
In this example, the time axis is defined in micro seconds, while the two
spatial axis are in mm. Set the appropriate units based on the experiment.

# dictionary object to hold the units along the different axis
units = {'t_units': '$\\mu$S', 's1_units': 'mm', 's2_units': 'mm'}





For ease of plotting, the s1 and s2 axis are converted to 2D meshgrid.

# meshgrid conversion in 2D
s1_2d, s2_2d = np.meshgrid(s1, s2, indexing='ij')





Raw data is visualized at four random spatial points by charting the
time series.

# raw data visualization
print('Pick 4 random spatial coordinates and chart the time-series...')
visualize_time_series(mat, t, s1, s2, units)





The spatial data is visualized at different time stamps as needed. In the
example below, the spatial data is visualized between time indices of 450
(t_min_idx) to 500 (t_max_idx) in steps of 25 (del_t_idx).

print('Visualize spatial slices of data at certain time stamps...')
t_min_idx = 450
t_max_idx = 500
del_t_idx = 25
visualize_spatial_data(mat, t, s1_2d, s2_2d,
                       t_min_idx, t_max_idx, del_t_idx, units)





The raw time series is very noisy and often a low-pass filter is desired. In
this example, the time series is filtered using a simple mean filter. The
filter avergages using the size parameter. The bigger the number, the more
aggressive the filtering is.

# time series filtering of data
print('performing mean filtering at each spatial location...')
mat = mean_filter(mat, t, s1, s2, units, size=20, plot_sample=True)





The defects are defined using the list structure. As many defects can be
setup. The defects can be defined using as many vertices as needed. Each
defect is a list of tuples. The defect names or labels are a list
containing strings.

# define defects
print('Defining coordinates of defects...')
# define as many defects as needed
# each defect should contain the coordinates of the vertices
# the structure is list of tuples
def1 = [(20, 20), (50, 10), (30, 40), (20, 30)]
def2 = [(120, 120), (180, 120), (150, 180)]
def3 = [(60, 60), (80, 60), (80, 80), (60, 80)]

# list contains all the defects
defs_coord = [def1, def2, def3]
def_names = ['D1', 'D2', 'D3']  # names of defects
defs = define_defects(s1, s2, defs_coord, def_names)





Calculation of features at every time index is computationally intensive.
A sample of time stamps in defined. t_stamps defines the indices at which
features are calculated, and where performance is finally measured.

# sample time indices where computationally intentionally features
# will be calculated.
t_stamps = range(500, 800, 100)





Feature engineering is very important and is based on problem at hand and
creativity of the researcher. Feel free to define additional features as
necessary. In the sample, the following family of features are calculated.

Identity features.

# identity features
features_id = {}
features_id['id'] = mat





Gradient based features.

# compute gradient features
print('Calculating spatial and temporal gradients...')
features_grad = {}
features_grad = compute_features_grad(mat)





Spatial domain features are calculated at desired time indices defined above.

# compute spatial domain features
print('Calculating spatial features at every location and time...')
features_sd = {}
features_sd = compute_features_sd(mat, t_stamps)





Time domain features are calculated at desired time indices defined above.

# compute time domain features
print('Calculating temporal features at every spatial location...')
features_td = {}
features_td = compute_features_td(mat, t_stamps)





Wavelet decomposition features are calculated at desired time indices
defined above.

# compute wavelet decomposition features
print('Calculating wavelet transformed features at every location...')
features_wav = {}
features_wav = compute_features_wav(mat, t_stamps)





Once features are calculated, it is often desired to visualize the feature.
The visualize_features accomplishes this as shown below. In the examples,
s1_grad and s2_grad features belonging to features_grad are visualized.

# visualize feature
print('Visualizing computed features...')
t_idx = 650
visualize_features(mat, features_grad, s1_2d, s2_2d, 's1_grad',
                   t_idx, t, units)
visualize_features(mat, features_grad, s1_2d, s2_2d, 's2_grad',
                   t_idx, t, units)





The input features across all families are now combined into a single
feature family for further processing. combine_features function
combines the family of features as defined in the list named feature_list.

# combine features
print('Combining all features from different methods into a dict...')
feature_list = [features_id, features_grad, features_sd,
                features_td, features_wav]
features = {}
features = combine_features(feature_list)
print('Total number of features is %d' % (len(features)))





The features are scaled using the minimum and maximum values, so that the
resulting features lie between 0-1. Scaling features has proven to be
useful in Machine Learning.

# normalize features
print('Normalize features...')
features = normalize_features(features, t_stamps)





Outlier analysis is perfomed using two methods - Mahalanobis distance and
Outlier Forest. If PCA is desired to reduce input dimensionality, set
pca_var to the Desired Variance level. For example, if pca_var is set
to 0.9, then it is implied that 90% variance is desired. Accordingly, PCA
will choose the number of dimensions that are needed to achieve this. The
result of Mahalanobis distance is output to the ndarray named mah.

# Outlier analysis using Mahalanobis distance
# if PCA is required to trim features, set pca_var to the desired
# explained varaince level - in this example, 90% variance is desired
print('Mahalanobis distance to identify outliers...')
mah = {}
mah = outlier_mah(features, t_stamps, pca_var=0.9)





Another popular method to detect outliers uses Isolation Forest method.
The result is output to the ndarray named iso.

# fit Isolation Forest model
# if PCA is required to trim features, set pca_var to the desired
# explained variance level - in this example, 90% variance is desired
print('Fit Isolation Forest model...')
iso = {}
iso = fit_isolationforest_model(features, t_stamps, pca_var=0.9)





In order to better visualize the results contained in mah and iso, the
frames are scaled between 0-1 using the minimum and maximum values of the
arrays.

# scale frames between 0-1
print('Scaling frames between 0-1 for better interpretability...')
mat = scale_frames(mat, t_stamps)
mah = scale_frames(mah, t_stamps)
iso = scale_frames(iso, t_stamps)





defect_detection_metrics will compute the performance of the algorithms
using True Positive Rate (TPR), False Positive Rate (FPR) and Area
Under Curve (AUC) metrics. The function will also output the TPR at FPR
rates of 2%, 5% and 10%. If plot parameter is set to True, the
Reciever Operating Characteristic (ROC) curves are plotted to show the
improvement obtained over the raw data.

# Defect detection metrics
print('Quantification of defect detection and plotting the results...')
defect_detection_metrics(mat, mah, iso, s1_2d, s2_2d,
                         defs, t_stamps, t, units, plot=True)











            

          

      

      

    

  

    
      
          
            
  
How to cite

if you use this work in your research, please cite using;

@software{ArunManohar_20210322,
  author       = {Arun Manohar},
  title        = {{Defect Detection and Quantification Toolbox (DDQT)}},
  month        = mar,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.00},
  doi          = {},
  url          = {}
}





Thank you!





            

          

      

      

    

  

    
      
          
            
  
DefectDetectonToolbox



	DefectDetection module

	point_in_convex_polygon module









            

          

      

      

    

  

    
      
          
            
  
DefectDetection module


	
DefectDetection.annotate_plots(ax, defs)

	Annotate charts with locations of defects


	Parameters

	
	ax (axis object) – plot axis


	defs (dict) – defect parameters






	Returns

	None










	
DefectDetection.combine_features(feature_list)

	Combine all features from different methods into one single dict


	Parameters

	feature_list (list) – list containing all entries of input features
that need to be concatenated



	Returns

	features: feature dictionary containing all the input features



	Return type

	dict










	
DefectDetection.compute_features_grad(mat)

	Calculates spatial and temporal gradients


	Parameters

	mat (ndarray) – raw data



	Returns

	features_grad: dictionary containing spatial and temporal
gradient features



	Return type

	dict










	
DefectDetection.compute_features_sd(mat, t_stamps)

	Calculates spatial features at every location and time stamp


	Parameters

	
	mat (ndarray) – raw data


	t_stamps (list) – time stamps at which time domain features are
calculated






	Returns

	features_sd: dictionary containing spatial domain features



	Return type

	dict










	
DefectDetection.compute_features_td(mat, t_stamps)

	Calculating temporal features at every spatial location


	Parameters

	
	mat (ndarray) – raw data


	t_stamps (list) – time stamps at which time domain features are
calculated






	Returns

	features_td: dictionary containing time domain features



	Return type

	dict










	
DefectDetection.compute_features_wav(mat, t_stamps)

	Calculates wavelet transformed features at every location


	Parameters

	
	mat (ndarray) – raw data


	t_stamps (list) – time stamps at which wavelet features are calculated






	Returns

	features_wav: dictionary containing wavelet features



	Return type

	dict










	
DefectDetection.defect_detection_metrics(mat, mah, iso, s1_2d, s2_2d, defs, t_stamps, t, units, plot=True)

	Quantification of defect detection, and plotting the results

True-Positive Rate (TPR), False-Positive Rate (FPR), Receiver Operating
Curves (ROC) are calculated for the raw data, Mahalanobis distance and
result of Isolation Forest method. In addition, Area Under Curve (AUC)
is also calculated to quantify the performance. Often, performance in
terms of higher TPR is desired at lower FPR. To aid this, TPR values
are calculated at 2%, 5% and 10% FPR. Further, the results are presented
graphically if needed.


	Parameters

	
	mat (ndarray) – raw data - 3D float array


	mah (ndarray) – result of performing Mahalanobis distance - 3D float array


	iso (ndarray) – result of performing Isolation Forest algorithm - 3D
float array


	s1_2d (ndarray) – 2D meshgrid representation of s1 axis


	s2_2d (ndarray) – 2D meshgrid representation of s2 axis


	defs (dict) – defect parameters


	t_stamps (list) – time stamps at which features were calculated and where
results are desired


	t (list) – time coordinates


	units (dict) – units of the different dimensions


	plot (Bool) – Boolean to indicate if plots are needed to visualize






	Returns

	None










	
DefectDetection.define_defects(s1, s2, defs_coord, def_names)

	Define coordinates of defects


	Parameters

	
	s1 (list) – spatial axis 1


	s2 (list) – spatial axis 2


	defs_coord (list) – list containing all defects - each defect contains
a list of tuples containing the vertices of defect


	def_names (dict) – dictionary containing the names of defects






	Returns

	defs: dictionary containing all the necessary parameters of
all the defined defects



	Return type

	dict










	
DefectDetection.fit_isolationforest_model(features, t_stamps, pca_var)

	Fit Isolation Forest model


	Parameters

	
	features (dict) – dictionary containing all input features


	t_stamps (list) – time stamps at which features were calculated and where
results are desired


	pca_var (float) – contains the desired explained variance parameter,
if less than 1.0, PCA will be performed






	Returns

	iso: result of Isolation Forest model over the data



	Return type

	ndarray










	
DefectDetection.main()

	All the subroutines will be called from here






	
DefectDetection.mean_filter(mat, t, s1, s2, units, size, plot_sample)

	performs mean filtering at each location


	Parameters

	
	mat (ndarray) – raw data


	t (list) – time axis


	s1 (list) – spatial axis 1


	s2 (list) – spatial axis 2


	units (dict) – units of the different dimensions


	size (int) – number of elements to use in the mean filter. The higher,
the more aggresive the filtering


	plot_sample (Bool) – Boolean to indicate if time series plots are
needed to compare raw and filtered data






	Returns

	filt_mat: mean filtered raw data based on kernel size



	Return type

	ndarray










	
DefectDetection.normalize_features(features, t_stamps)

	Normalize features


	Parameters

	
	features (dict) – dictionary containing all input features


	t_stamps (list) – time stamps at which features were calculated and where
results are desired






	Returns

	features: dictionary containing all normalized features



	Return type

	dict










	
DefectDetection.outlier_mah(features, t_stamps, pca_var)

	Mahalanobis distance to identify outliers


	Parameters

	
	features (dict) – dictionary containing all input features


	t_stamps (list) – time stamps at which features were calculated and where
results are desired


	pca_var (float) – contains the desired explained variance parameter,
if less than 1.0, PCA will be performed






	Returns

	mah: contains the result of computing Mahalanobis distance over
the data



	Return type

	ndarray










	
DefectDetection.read_matlab_data(dataset, table)

	Reads in raw matlab data using scipy IO modules


	Parameters

	
	dataset (ndarray) – name of the Matlab dataset


	table (str) – name of table within Matlab






	Returns

	mat: matlab data that has been converted to numpy array



	Return type

	ndarray










	
DefectDetection.scale_frames(arr, t_stamps)

	Scale frames between 0-1 for better interpretability


	Parameters

	
	arr (ndarray) – input array that needs to be scaled


	t_stamps (list) – time stamps at which features were calculated and where
results are desired






	Returns

	outarr: scaled array where the elements lie between 0-1



	Return type

	ndarray










	
DefectDetection.visualize_features(mat, features, s1_2d, s2_2d, feature, t_idx, t, units)

	Visualize computed features


	Parameters

	
	mat (ndarray) – raw data


	features (dict) – dictionary containing input features


	s1_2d (ndarray) – 2D meshgrid representation of s1 axis


	s2_2d (ndarray) – 2D meshgrid representation of s2 axis


	feature (str) – desired feature that needs to be visualized


	t_idx (int) – time index at which visualization is needed


	units (dict) – units of the different dimensions






	Returns

	None










	
DefectDetection.visualize_spatial_data(mat, t, s1_2d, s2_2d, t_min_idx, t_max_idx, del_t_idx, units)

	Visualize spatial slices of data at certain time stamps


	Parameters

	
	mat (ndarray) – raw data


	t (list) – time axis


	s1_2d (ndarray) – 2D meshgrid representation of s1 axis


	s2_2d (ndarray) – 2D meshgrid representation of s2 axis


	t_min_idx (int) – lower bound time index for visualization


	t_max_idx (int) – upper bound time index for visualization


	del_t_idx (int) – time index steps for visualization


	units (dict) – units of the different dimensions






	Returns

	None










	
DefectDetection.visualize_time_series(mat, t, s1, s2, units)

	Pick 4 random spatial coordinates and chart the time-series


	Parameters

	
	mat (ndarray) – raw data


	t (list) – time axis


	s1 (list) – spatial axis 1


	s2 (list) – spatial axis 2


	units (dict) – units of the different dimensions






	Returns

	None













            

          

      

      

    

  

    
      
          
            
  
point_in_convex_polygon module

Helper module to determine if a point lies within a polygon

Script is based on Ref1 [https://stackoverflow.com/questions/2752725/finding-whether-a-point-lies-inside-a-rectangle-or-not] and Ref2 [https://algorithmtutor.com/Computational-Geometry/Check-if-a-point-is-inside-a-polygon/].


	
class point_in_convex_polygon.Point(s1, s2)

	Bases: object

Point class to define a point






	
point_in_convex_polygon.is_within_polygon(polygon, point)

	Determine if a point lies within the polygon


	Parameters

	
	polygon (list of points) – polygon definition using a set of points


	point – a single point






	Returns

	True/False: Depending on if point lies within polygon



	Return type

	Bool













            

          

      

      

    

  

    
      
          
            
  
License

BSD 3-Clause License

Copyright (c) 2021, Arun Manohar
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





            

          

      

      

    

  

    
      
          
            
  
Contact

Arun Manohar

>>>my_first_name = 'arun'
>>>print(str(my_first_name) + 'mano121@outlook.com')
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